organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ying-Ying Liu, Jian-Fang Ma* and Yun-Peng Xie

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

Correspondence e-mail: jianfangma@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.045 wR factor = 0.119 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethyl pamoate

In the title compound, $C_{27}H_{24}O_6$, the dihedral angle between the two naphthalene ring systems is 84.79 (6)°. The unit-cell packing features weak π - π interactions along the *a* axis between adjacent molecules. Received 3 August 2006 Accepted 7 August 2006

Comment

Organotin compounds have been widely used in homogeneous catalysis, and they have shown increased selectivity in a variety of chemical transformations (Edelman *et al.*, 1990; Orita *et al.*, 1999). In this work, the title compound, (I), was synthesized under the catalysis of an organotin compound. Although pamoic acid is a well known industrial precursor (Fei *et al.*, 2001), to the best of our knowledge, the crystal structure of its ethyl ester has never been reported.

The two naphthalene ring systems of (I) are almost perpendicular, with a dihedral angle of 84.79 (6)° (Fig. 1). The bond distances and bond angles are all normal. Two intramolecular $O-H\cdots O$ interactions (Table 1) are observed. The

© 2006 International Union of Crystallography All rights reserved A view of (I), showing 30% displacement ellipsoids (arbitrary spheres for the H atoms). Hydrogen bonds are indicated by dashed lines.

naphthalene rings of adjacent molecules show centroid-tocentroid distances of 3.97 Å along the *a* axis (Fig. 2), indicating the presence of weak π - π interactions (Dong *et al.*, 2005).

Experimental

A mixture of pamoic acid (0.194 g, 0.5 mmol), NaOH (0.040 g, 1 mmol) and Bu₂SnCl₂ (0.152 g, 0.5 mmol) in ethanol (8 ml) was sealed in a 15 ml Teflon-lined stainless steel bomb and heated to 413 K for 3 days. Yellow crystals of (I) were obtained after slowly cooling to room temperature at the rate of 10 K h⁻¹.

Z = 8

 $D_x = 1.319 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) KBlock, yellow $0.32 \times 0.25 \times 0.23 \text{ mm}$

10534 measured reflections

 $R_{\rm int} = 0.021$

 $\theta_{\rm max} = 25.6^\circ$

4127 independent reflections

2992 reflections with $I > 2\sigma(I)$

Crystal data

C27H24O6	
$M_r = 444.46$	
Monoclinic, C2/c	
a = 14.556 (5) Å	
<i>b</i> = 11.153 (5) Å	
c = 27.617 (5) Å	
$\beta = 93.514 \ (5)^{\circ}$	
$V = 4475 (3) \text{ Å}^3$	

Data collection

Bruker APEX CCD diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.941, T_{\max} = 0.965$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.057P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	+ 1.3961P]
$wR(F^2) = 0.120$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
4127 reflections	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
298 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O3 - H3 \cdots O2 \\ O6 - H4 \cdots O5 \end{array}$	0.82	1.86	2.589 (2)	148
	0.82	1.86	2.597 (2)	148

All C-bound H atoms were positioned geometrically and refined as riding, with C-H = 0.93–0.97 Å and $U_{\rm iso}(\rm H)$ = $1.2U_{\rm eq}(\rm C)$ or $1.5U_{\rm eq}(\rm methyl C)$. The hydroxyl H atoms were located in difference maps, repositioned in idealized locations and refined as riding, with $U_{\rm iso}(\rm H) = 1.5U_{\rm eq}(\rm O)$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve

structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

We thank the National Natural Science Foundation of China (No. 20471014), the Program for New Century Excellent Talents in Chinese Universities (NCET-05–0320), the Fok Ying Tung Education Foundation, the Science Foundation for Young Teachers of NENU (No. 20050310) and the Analysis and Testing Foundation of Northeast Normal University for support.

References

- Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dong, X.-W., Wu, H. & Ma, J.-F. (2005). Acta Cryst. E61, m2400-m2401.

Edelman, M. A., Hitchock, P. B. & Lappert, M. F. (1990). J. Chem. Soc. Chem. Commun. pp. 1116–1117.

- Fei, Z. F., Slawin, A. M. Z. & Woollins, J. D. (2001). Polyhedron, 20, 3355– 3360.
- Orita, A., Sakamoto, K., Hamada, Y., Mitsutome, A. & Otera, J. (1999). *Tetrahedron*, 55, 2899–2910.

Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.